Dear Colleagues,
I am delighted to share with you our first Newsletter of the 2017-2020 triennial. The first year of the triennial has passed and we are nearing the call for abstracts for the next triennial conference. A great opportunity to share current work of our members, so please start already thinking about contributions and check out the Working Group program published also in this Newsletter!
In this triennial I am supported by 4 great assistant coordinators. Here are our contact details, please do not hesitate to contact us with questions, contributions or suggestions you have.

Coordinator
Farideh Fekrsanati
National Museum of World Cultures, Museum Volkenkunde
Steenstraat 1, Postbus 212, 2300 AE Leiden, THE NETHERLANDS
E-mail: farideh.fekrsanati@wereldculturen.nl

Assistant Coordinators
Sabine Cotte
Paintings Conservation
Niagara Lane
Melbourne Vic 3000
AUSTRALIA
E-mail: sabinec@ozemail.com.au

Ana Carolina Delgado Vieira
Museu de Arqueologia e Etnologia - 31 MAE / USP
Avenida Professor Almeida Prado
1466 - São Paulo – SP BRAZIL
E-mail: ana.carolina.vieira@usp.br

Lucie Monot
Musée Déthnographie de Genève
65, Bd Carl-Vogt
1205 Geneve
SWITZERLAND
E-mail: lucie.monot@ville-ge.ch

Catherine Smith
Dodd-Walls Centre
University of Otago
PO Box 56
Dunedin 9054, NEW ZEALAND
E-mail: catherine.smith@otago.ac.nz
At the business meeting in Copenhagen in September 2017 the wish was formulated to find a format with which we as a community can communicate and share information more readily. We are currently looking into that and I would welcome suggestions from the membership on subjects but also formats or platforms that would be useful (please send suggestions to farideh.fekrsanati@wereldculturen.nl).

Currently we have a rather active and well-liked Facebook page (https://www.facebook.com/ObjectsfromIndigenousandWorldCultures/?ref=bookmarks), we also have a LinkedIn page (http://www.linkedin.com/groups/8280028), if you are not yet following, please do so. We are posting regularly interesting information and encourage everyone to actively participate and engage in. Our Facebook page is currently followed by 1549 people from all over the world. Considering the diversity of our followers and our group, we invite contributions also in languages other than English. We are keen to increase the discussions that are relevant to our discipline.

Further we want to update the biocides information on the Working Group’s ICOM-CC web page. If you have information, articles or research reports relevant to this topic, which are not yet included in the bibliography (http://www.icom-cc.org/10/documents?catid=8&subid=175#W36-xTEyXI) please send them to farideh.fekrsanati@wereldculturen.nl or to lucie.monot@ville-ge.ch. We welcome contributions in any language in order to compile an overview of the important work done on this topic by our colleagues.

A big thank you to everyone who contributed to this Newsletter, especially to our two editors Catherine Smith and Sabine Cotte, without their hard work this Newsletter would not come together. Enjoy reading and I look forward to hearing from you and receiving suggestions and further contributions.

With warm regards
Farideh Fekrsanati

TRIENNIAL PROGRAMME

ICOM-CC Objects from Indigenous and World Cultures Working Group

Triennial Programme 2017-2020

Working Group Activities and Projects 2017–2020:

Specific themes for investigation/ideas

A. Materials science, deterioration and conservation
- Investigation/ technical study of objects, object materials and production methods
- Deterioration of materials found in objects
- Conservation case studies
- Exhibition and display methods
- Storage methods

B. Ethics, values and decision-making
- Decision-making processes and preservation rationales
- Collaborations with diverse interest groups and assessments of their impact in conservation decision-making
- Living traditions and production practices and conservation
- Reviews of historic practices in the preservation of indigenous and world cultures cultural materials
- Developments in approaches to preservation of museum collections
- Socio-political responsibilities, including continuing developments within international indigenous rights
- Local systems of knowledge and their roles in conservation

C. Cross Disciplinary Themes
- Emergency and disaster recovery (coordination with the ICOM-CC Preventive Conservation Working Group)
- Sustainability

Projects

Communications:
- Publication of an annual issue of the Working Group Newsletter
- Engage with the membership through the ICOM-CC website and social media such as Facebook
Investigate possibilities within ICOM-CC to bring the membership together online in order to facilitate sharing relevant information/research (ex: websites/downloads/webinars)

General:
- Follow up on research of biocides in collections and update the Working Group’s Biocides webpage
- Follow up on author permissions for past Triennial Conference Preprints and publications of the Working Group in order to facilitate online publication

Link to website: http://www.icom-cc.org/238/Triennial%20programme/

ARTICLE

Moving canoes and houses – From Dahlem to the Humboldt Forum

Leonie Gärtner, Conservator (Oceania), Ethnologisches Museum Berlin

The exhibitions of the Ethnologisches Museum Berlin are moving from Dahlem to a new museum building in the city center. They will be part of the Humboldt Forum housed in the partially reconstructed Hohenzollern Palace and are to open by the end of 2019. A broad outline of the conservation aspects of the move was presented as a poster at the ICOM-CC Triennial Conference in Copenhagen in 2017 (Kantzenbach and Gärtner, 2017 http://icom-cc-publications-online.org/). Since then, the project has progressed and the move has begun. While most of the approximately 10,000 objects that will be displayed are still being treated in the Conservation Department and prepared for the move, 6 canoes, 7 ancestor poles and 3 houses from the South Pacific have already been transported to the new building (Fig.1).

![Figure 1: Some of the canoes in the galleries in Dahlem, the longest canoe in the back](image)

Due to their size (up to 10 meters in height and 15 meters in length) these objects are considered oversized objects and had to be brought into the building via openings in the walls that will now be permanently closed. This essentially means that the oversized objects were brought in at a stage when the building was still a building site and will remain in the galleries (packed in their crates) until they can be unpacked and reassembled.

To explain the consequences this had on conservation and transport, one has to look at the whole planning process. As it happens with many big projects which have a long planning phase (in this case 2010 – 2018) and involve many different parties, the parts of the project changed several times. As a
consequence the conservation, dismantling, packing and transport of the oversized objects had to be adjusted accordingly.

1) Considering and mitigating the risks of bringing objects onto a building site
After the locations of the oversized objects in the new building were finalized, a feasibility study was carried out to ascertain that the proposed route of access would indeed work out. The objects were to be brought in through the main portal after the doors had been removed. They would be lifted 12m by overhead crane up to the first floor and moved into the gallery through an opening in the wall (its size limited by ducts of the air conditioning).

This study became the groundwork on which all further planning was based. It dictated the size of the parts that the oversized objects had to be dismantled to, the construction of the crates and also, to a small extent, the organization of the building process itself. The time period for bringing in the crates was predetermined by the general construction work schedule since major work in the main entrance hall could only be carried out after the transport of the oversized objects.

To limit the risk from being brought onto a building site, the museum's Conservation Department defined a set of general requirements: All parts of the route of access into the Humboldt Forum had to be completely built, which included finished and protected stone floors. During transport, all construction had to be halted in the areas leading to the galleries. It was also deemed crucial to keep the level of cleanliness well above the normal standard of a building site, including measures of Integrated Pest Management like rodent control.

The galleries themselves had to be finished completely in order to safely bring in the objects. Enough time had to be factored in for the poured concrete floors to dry and the surface treatment to off-gas. No further building work was to be done once the crates were in, apart from closing the opening in the wall. For security reasons the locks and fire detectors had to be installed and working. Most importantly, strict climate guidelines required functioning air-conditioning to safely store the objects.

2) Conservation
A first condition survey of the oversized objects was carried out in 2011 to determine the probability of dismantling the objects without loss of original material. Thanks to careful planning, it was possible to only cut modern bindings and to undo joints from the 1960s restoration. Conservation planning picked up speed in 2016, when we as conservators of the Ethnologisches Museum and our coordinator for the relocation provided the specifications of tender for the conservation of the oversized objects. Through a highly regulated process seven teams of conservators were commissioned to work on the canoes, ancestor poles and houses. At the same time, space and infrastructure for the treatments had to be organized inside the former permanent exhibition where the objects were situated.

Most objects required work both while still in the galleries in Dahlem as well as upon installation in the Humboldt Forum. Documentation, cleaning, stabilization of wood and plant fiber material, primary consolidation and dismantling were to be executed prior to transport. Reassembly, secondary consolidation, infills and retouching will be carried out upon installation in the new building.

During the planning phase in 2016, it became apparent that the AC units would not be running at the time of transport and that they would indeed not be up and running until about 9 months later. Postponing the transports was not an option since this would have endangered the general construction work schedule. Moving into the galleries with no means of controlling the climate however was also not an option. A compromise was reached and temporary AC units were commissioned. They were installed shortly before the first crates reached the Humboldt Forum. As expected, regulating the climate in the huge galleries took some time and many adjustments. Once the openings in the walls are closed, we will be able to provide a stable environment. As a result, reassembling and installing the objects, initially scheduled for fall 2018, had to be postponed to spring 2019 in order not to risk damage to the objects because of the installation/regulation of the AC units and building work inside the galleries.

Due to this change in plans, treatment decisions for several of the oversized objects had to be reconsidered and changed. Once we became aware of the fact that the objects would stay in their crates much longer than anticipated, and the time for reassembly and all remaining measures would be much shorter, treatments had to be changed.
One example of such a change is the consolidation of the caulking of the biggest canoe. The so called “Luf Boot” from the Western Islands in Melanesia was acquired by the museum in 1904 and has been on display several times since. Its hull is constructed of a dugout, onto which 2 strakes have been added. The strakes are fastened using only bindings of plant material. The gaps are caulked with black putty made of plant material from *atuna racemosa* subsp. racemosa. Due to movement of the wood, both during former transport and probably also due to fluctuations in RH, parts of the caulking had come loose. Some fragments had also already fallen off. Since further movement of the strakes during transport to the Humboldt Forum could not be ruled out, it was decided to carry out the consolidation of the caulking at the new building after the canoe had reached its final destination. To prevent loss of caulking during handling the canoe, temporary consolidation using cyclododecane and a thin polyethylene-nonwoven interface was tested and applied. Cyclododecane was selected because all other consolidants resulted in a change of color of the wood and/or the paint layer (cyclododecane (C\(_{12}\)H\(_{24}\)) is a volatile cyclic alkene solid at room temperature with a melting point of 58° - 61°C. Over time it sublimes from solid to gaseous state at room temperature, which makes it suitable as a temporary consolidant).

As a temporary measure, this was only meant to consolidate the caulking for a couple of months until unpacking would start in fall 2019. The additional 9 months that the canoe would have to stay in its crate now had to be taken into account. Since we did not have any means to figure out how long the Cyclododecane would take to evaporate, we had to find a way to secure loosened fragments of caulking in place mechanically. A system using pillows made from polyethylene sheeting filled with Styrofoam beads was devised to follow the contours as closely as possible. The pillows are held in place by wooden supports which are directly affixed to the crate itself (Fig. 2).

![Figure 2 The hull of the Luf Boot in its crate with pillows and wooden supports](image)

3) Transport
While the conservation work was under way, the planning of packing and transport started. Luckily a specialized planning consultant could be hired to work out the tender for packing and transport, liaise with the builders, obtain all necessary permits and to schedule the move.

When devising the crates for the parts of the oversized objects, several factors had to be taken into account. The maximum size of the crates was dictated by the measurements of the openings in the walls. This meant that additional climate buffering was not possible, because the crates would have been too big to fit through. The construction had to be warp resistant since the crates would be hoisted up by crane onto the truck and then be brought to the first floor via overhead crane. This was especially
important for the longest crates (l x w x h: 16,00 x 1,30 x 2,40m) and highest (l x w x h: 8,50 x 2,50 x 4,18m).

The now longer time the objects would spend in the crates was also to be considered. Some of the parts (mostly outriggers and sails of the canoes) had to be tilted at an angle or turned 90° inside the crates to fit into the new building. (Fig.3) All supports had to be constructed in a way that would support the objects for the whole duration of the time spent packed up. The 50 packed crates underwent anoxic treatment in a mobile plastic bubble with a volume of 1200 m³ (Fig.4) and were then transported to the Humboldt Forum. Due to the large size of some of the crates, special flatbed trucks had to be used. To minimize shock/vibration, they could not drive faster than 15 km/h which would block the street for all other traffic, so these nine transports had to take place at night (Fig.5).

Figure 3 Outrigger of a canoe, turned 90° inside the crate
Because the flatbed trucks were not covered, transport could not commence during rain. Thanks to an unusually hot and dry summer, only one transport had to be postponed by a day. In the Humboldt Forum, moving the crates by crane up and into the galleries was a time-consuming job. Each crate had to be moved separately, and the 4 cranes had to be readjusted after each lifting (Figure 6).
Inside the galleries, careful managing of space was necessary since there was scarcely enough space to maneuver the crates as a lot of space was occupied by the overhead crane. Once all the crates were in the galleries, the crane was taken down and the crates moved to their final position. Contrary to what was initially planned, a lot of building work still has to be carried out inside the galleries. Therefore space/walkways had to be kept free on the perimeter and the middle of the room. This meant putting the crates closer together than planned, restricting access during the time till unpacking.

Once the openings in the walls are closed and relative humidity stabilizes, we will start to routinely check on the crates. Strategically placed crates are equipped with dataloggers that will be checked weekly. Some of them are also registering shock to know if anything happened to the crates. Access to the galleries is limited to a small number of museum employees; all building contractors have to check with the museum one week before they plan to work in the galleries. When building work is carried out, additional protective measures will have to be implemented. Before unpacking in 2019, all crates will have to be vacuum cleaned to get rid of building dust and the like.

4) Unpacking + construction of the new exhibition / outlook

In March 2019, once the AC of the new building is fully functional and the climate set points are reached / stable and no more building work in the galleries is carried out, the oversized objects will be unpacked and conservation and reconstruction will commence. We are expecting 130 days for the canoes and 260 days for the houses, including the thatching of a roof by indigenous builders from Palau. Canoes and houses will be constructed at the same time. Once all the oversized objects are reassembled, installation of smaller objects in showcases can begin. The Humboldt Forum will start opening by the end of 2019; that’s not much time, but there’s still a long way to go.
ARTICLE

Characterisation of an unidentified adhesive found on a barkcloth object, the Hunterian, University of Glasgow

Staphany Cheng, Megan Mary Cramer (MPhil candidates, Textile Conservation, Centre for Textile Conservation and Technical Art History (CTCTAH), University of Glasgow and Misa Tamura* (Former Research Conservator and affiliate, Situating Pacific Barkcloth in Time and Place project, CTCTAH, University of Glasgow

*Author for correspondence

Introduction

The conservation programme for the *Situating Pacific Barkcloth in Time and Place* project aimed to conserve the project’s core source collections. Polynesian barkcloth collections from the Hunterian (University of Glasgow) and the Economic Botany Collection (Royal Botanic Gardens, Kew) were brought to the Centre for Textile Conservation and Technical Art History (CTCTAH), University of Glasgow in 2016, where the project was based. The conservation programme was set up to stabilise the two collections for access and storage improvement. This was done to facilitate access and handling, initially for the project’s historical research and scientific analysis and in the long term during research and community visits from external scholars. Such access facilitation was one of the core objectives for the project, and was especially important for the collection at the Hunterian, whose barkcloth collection was considered to be one of the most significant early-historical (18th-19th centuries) collections, yet relatively under-studied and lesser-known internationally. The material-focused and investigative nature of the project also meant that the conservation process incorporated preliminary material characterisation and observation, which informed discussion about the nature of the material used for barkcloth production between the conservator and the scientific associate, who carried out instrumental material analysis.

The object (GLAHM:E.458/6) is a large piece of barkcloth (2900x1520mm) that forms part of the Hunterian’s Polynesian barkcloth collection. It was made up of two pieces of barkcloth joined together, with one half painted black and another with “fishnet” like outlines. It was brought to the CTCTAH project lab for conservation and re-housing (Fig.1).

Upon the initial assessment made during the condition survey, the object presented what appeared to be an extensive accreted, opaque adhesive residue running along the edges, as well as running vertically in the middle of the cloth. The adhesive residue was initially suspected to be a post-acquisition addition, presumably applied to adhere the object to a substrate or backing board for the purpose of...
display (Fig. 2). This speculation was made since the adhesive residue appeared significantly different to other Polynesian barkcloth objects which were produced with indigenous adhesives.

However, it was clear after the object underwent a professional, large-scale photography session at the University of Glasgow’s Photo Unit that the residual adhesive accretion had been applied symmetrically with the central line as the axis, suggesting that the piece was adhered edge-to-edge with one central fold. The birds-eye view of this large object enabled by the photography enabled the conservators to examine the object’s overall structure. It was extremely beneficial in contextualising how the adhesive would have been used.

Use of adhesive in barkcloth production

The Hunterian’s online catalogue tentatively attributed the production of the object to 18th century Tonga. However, this attribution was considered not fully evidenced. There are similar barkcloth objects in other collections. The Smithsonian National Museum of Natural History (66A00050) and the British Museum (Oc1921,1005.15 and Oc1986,02.61) have similarly decorated objects with applied surface decoration of repeated diamond shapes with a dot on the point where the lines meet, drawn in black on a uniformly dyed brown background.

Moreover, online catalogue images of the one of the British Museum barkcloths (Oc1986,02.61) appear to have visually similar adhesive accretion as the Hunterian barkcloth. One speculation was that the adhesive seen on this type of cloth was an intrinsic part of the object. However, with only two examples known to compare it was considered that any such speculation was not sufficiently substantiated (Collection Search Center, Smithsonian Institute and The British Museum Collection Online).

By and large, in Polynesian practices, the barkcloths are/were made of the inner bark/bast fibre of chiefly Moraceae family such as paper mulberry (Broussonetia papyrifera), breadfruit (Artocarpus altilis) and fig (Ficus sp.) trees. Their inner bark is removed from the wood, its outer bark scraped off and soaked for a varying period of time according to the practices of the different islands. The inner-bark is beaten using a grooved beater in order for it to spread and acquire its textile-like flexibility. By and large, techniques for producing a large sheet of barkcloth were divided into either sewing, felting or pasting, according to Simon Kooijman. However, the practice of joining by sewing was less widely employed by historical barkcloth production in the region, such as in Hawaii. Felting is a technique whereby the smaller pieces were joined into a large piece by physically beating the layered fibres to merge them. Conversely, pasting involves the use of adhesive between the layers. Layers are frequently assembled with one layer laid perpendicularly to the other, creating greater structural strength in the finished work. In some cases, with historical barkcloth from islands known to have used pasting techniques, adhesion between the separated and failed layers can be re-activated by the application of moisture and weights if desired for the purpose of conservation, even though the adhesive itself is rarely visible. Historically Polynesian arrowroot, Tacca leontopetaloides, was reportedly used
commonly in the various islands and variably called pea (Tahiti), masoa (Samoa), and yabia (Fiji), among other names, although other types of plant-derived adhesives were also reportedly used (Kooijman, 1972, pp.112-114, Appendix Table D).

Among the objects from the Hunterian collection which were likely to have been constructed using adhesive, the adhesive was very evenly and smoothly applied and rarely presented itself as a form of accretion. This might be due to the fact that barkcloth layers, after the adhesive is applied, are then thoroughly rubbed smooth on the surface of a board (Kooijman 1972, p.223, pp.227-228, p.307). The adhesive is often transparent/translucent and appears well-integrated into the beaten inner-bark fibre layers (Fig.3).

Figure 3 An example of failed indigenous adhesive (from GLAHM:E.600)

The adhesive residue found on GLAHM:E.458/6 appeared to be a departure from these otherwise commonly-observed characteristics. The adhesive on GLAHM:E.458/6 was very heavily accreted and had a lumpy, uneven surface. The adhesive was also distinctively on the surface rather than worked into the fibre structure. Moreover, it appeared significantly more opaque than the other instances of the use of adhesive, so much so that it was even rather confidently suspected that it might be a modern synthetic emulsion adhesive applied after the item came to the Hunterian.

The barkcloth was constructed from two rectangular pieces, adhered together with an overlapping join which corresponded to a central fold line, as seen in Fig.4. On the back side of the painted cloth, adhesive was seen along this join, and along three edges. The pattern of the adhesive was symmetrical on either side of the central join, likely indicating that it had previously been adhered together, but had failed, leaving the cloth folded open. This adhesive failure left no evidence of damage to the fibres. The adhesive in the overlapping join was mostly intact, holding the two clothes together, with only slight failure of adhesive at the edges.
The adhesive was documented and classified into two visually distinct groups (Fig.5). The top layer of adhesive was white, opaque and chalky (Adhesive 1). When viewed under magnification it was characterised as thin, flaky and brittle. Adhesive 1 was heavily present along the central fold and the right edge. A lighter, symmetrical residue was seen on the left side of the central fold, indicating that the adhesive was initially applied on the right side and the cloth was then folded. The lower right corner showed the heaviest application of Adhesive 1. There was no distinct appearance of brush strokes or other tool marks. Overall, the adhesive had the appearance of being drizzled or poured, with a pattern of continuous lines or oval loops of varying thickness.

By contrast Adhesive 2 had a yellow-brown granular appearance. It was initially found underneath Adhesive 1 on the right-hand side. In this area it was present in small localised accretions, with an uneven, sparse application. Adhesive 2 was also found in the overlapping central join of the two barkcloth pieces. The application of Adhesive 2 in the central join was thickly applied and had begun to separate at the top edge.

Figure 5 Close up of the adhesive residues, showing both the white chalky layer and the yellow resinous accretions as indicated by the card pointer
Characterising the adhesive

Characterising the adhesive was done through visual analysis, solubility testing, and a chemical spot test. The object and adhesive were photographed overall, in detail, under raking light, transmitted light, and UV light. The two adhesives appeared distinct under ambient lighting conditions. Under UV light, a strong, light-yellow fluorescence was seen on all visible residues with no differentiation between Adhesives 1 and 2 (Fig.6). UV fluorescence was not a conclusive result alone, but was used to support other findings.

Figure 6 Adhesive residues under UV light, showing the edge of the central join which has begun to fail

Adhesive Solubility

Solubility tests were carried out in order to make a preliminary characterisation of the unknown adhesives by observing their behaviours in response to a range of solvents. Four solvents, commonly available in conservation laboratories, were used: namely, deionised water, acetone, industrial denatured alcohol (IDA) and white spirit. Ageing and degradation, and specific molecular components may cause any adhesive to respond differently to solvents. Much like UV fluorescence, solubility parameters are not conclusive alone, but can be used to support other results. In turn, characterising the adhesives as aqueous, polar-solvent-based or non-polar-solvent-based informs further material testing necessary in order to identify the material nature of the adhesives: such as starch-based, proteinaceous, natural resins, or various synthetic adhesives, such as acrylic.

The adhesives were examined under magnification using both a stereomicroscope and Dino-Lite 200x. Small samples of each adhesive (<5mm) were removed for solubility testing. They were placed on glass slides with a small drop of solvent, and observed for a period of 30 minutes to monitor visual changes. Additional drops of acetone and IDA were added as they evaporated.

Adhesive 1 and 2 both softened and swelled in deionised water and acetone. However, in both cases the adhesives did not dissolve in the solvents. The lower polarity solvent IDA caused both adhesives to fracture with applied pressure but no swelling was observed. With a non-polar solvent, white spirit, both adhesives became noticeably brittle. The test concluded that the adhesives were more likely to be aqueous or polar-solvent-based. The way the adhesives were readily swollen by both water and acetone, yet without dissolving, corresponded with the characteristics expected from starch-based adhesives.
Chemical Test
A potassium triiodide (KI₃) chemical test was performed on a <1mm fragment of each adhesive. This test is a routine indicator for the presence of starch (amylose molecules). The red-brown indicator solution turns blue-black in the presence of starch (Odegaard et al. 2005). For each type of adhesive the indicator solution immediately turned blue-black, indicating the presence of starch. Due to the layered nature of the adhesives, results were examined under the microscope to confirm.

Conclusion
Despite a distinct visual difference in colour and texture under ambient lighting that suggested the presence of different adhesives, it was concluded that the two adhesives are both largely starch-based. This conclusion was supported by a positive starch indicator test, and the swelling, but not dissolving, of the adhesives in water. The lack of solubility in non-polar solvents also supported identification as a starch-based adhesive. The molecular similarity of the two adhesives was also supported by the same visual appearance under UV light, where a strong white fluorescence can be indicative of cellulose-based adhesives (Rivers and Umney 2013 p. 610).

The slightly different solubility in polar solvents between Adhesives 1 and 2 could indicate a difference in formulation, such as the degree of gelatinization of the adhesives due to difference in starch source or preparation. Differences in appearance and lowered solubility could also be due to the time of adhesive application. The layering of the adhesives also supported the possibility that the resinous yellow-brown adhesive may have been applied earlier than the chalky white adhesive. The brittleness, yellow colour and resinous or crystalline appearance could be due to age-related degradation creating chromophoric compounds (Timar-Balaszy and Eastop 1998).

Adhesive 2 was the only adhesive visible in the central join, which suggested the overlapping join was an earlier construction than the subsequent folding and adhering. Both adhesives could be attributed to the initial creation of the object, or indicative of changes to the object over time when it was in use. Both adhesive applications could also be alterations to the object after it was received by collectors or used in the context of the Museum. There was no strong indication based on Museum records, provenance, or the materials’ characterisation that suggested one context was more likely than another.

The result also disproved the initial speculation that the adhesive could be a type of synthetic emulsion, a suspected post-acquisition application of adhesive. The visual characteristics of the starch-based adhesive on GLAHM:E.458/6 were distinctly different from adhesives used for other pasted objects from the Hunterian collection, and different from the refined, lab-grade starch-based adhesive that conservators may be familiar with. Although the reason for its opacity has yet to be identified, it was possible that the paste was manufactured using a starch source with unrefined impurities. The close observation and spot tests were beneficial in characterising the adhesive. This case study proved to us that mere visual examination and identification should always be treated with caution, and necessary material testing should be employed, to the best of the available resource and time, in order to support what is observed.

Acknowledgements
The authors would like to thank Professor Frances Lennard, the Principal Investigator for the project, and Dr Margaret Smith, the Scientific Associate for the project for their assistance and advice. Thanks are also due to the colleagues at the Photo Unit at the University of Glasgow. India Fullerton, the photographer, in particular, has been instrumental in making the large barkcloth collection visually and digitally accessible.

References
Interdisciplinary research on material culture and heritage of the Camëntsá People

Marcelo Marques Miranda & Jully Acuña Suárez
PhD Researchers, Faculty of Archaeology, Leiden University

Introduction

The collection of the Museum of Sibundoy (Colombia) consists mostly of objects that belong to the Camëntsá people. However, the exhibition reflects a great lack of knowledge and understanding of its culture and worldview. Likewise, in the same building, the archive contains a large variety of documents, books and photographs related to the Camëntsás. Yet, its potential has not been exploited. Therefore, we considered these two places to form the basis of our interdisciplinary research.

For too long, indigenous peoples have been represented and addressed from a colonial perspective. Their art is primitive and exotic craftsmanship. In museums, they are exhibited as trophies, decontextualized and desacralized. Archaeology detached them from history and claimed their property. Not surprisingly, despite the country’s cultural and ethnic diversity, heritage management mechanisms in Colombia reflect western and colonial notions that exclude indigenous peoples. These mechanisms function as a tool that disengages communities from protecting and managing their own heritage, disrespecting their human and collective rights and disempowering them.

For these reasons, we advocate for an intercultural approach to heritage management, based on an integrated and inclusive understanding, where researchers, institutions and indigenous communities work together. The use of interdisciplinary and participatory methods has the potential to include the community and to comprehend its traditional notions and management practices, as well as to contribute to the resolution of conflicts that invariably arise in the encounter of different worldviews.

Our research project addresses the relationship of indigenous people with its objects, sacred sites and ancestral territory. The project is focused on the Camëntsá People and Uaman Tabanoc, considered its place of origin. Nowadays known as Valley of Sibundoy, this region in southwest Colombia plays an essential role in the identity, history and worldview of the Camëntsás (Cabildo Camëntsá, 2012).

Inserted in a Research+Action framework, the project is divided into two interrelated areas: protection and conservation of sacred/archaeological sites and, interpretation and exhibition of material culture in the museum. This article is mainly dedicated to the latter. Both areas are approached holistically and connected to two broader elements which are essential to understand Camëntsá cultural heritage: the native language and the ancestral territory.

The objectives of the project include: documenting how the concepts of heritage and heritage value are defined by the Camëntsá people; characterizing the different elements or categories recognized by the community as possessing heritage value; knowing who holds custody and responsibility over places and objects and understand what is meant by custody of those elements; understanding how the community relates and identifies with objects, sites and the territory; and training the community so that it can develop methods and policies for heritage management and protection that are adapted to contemporary needs and based on its worldview.

Methodology
Our methodology can be generally referred to as Archaeological Ethnography (Hamilakis & Anagnostopoulos, 2009). This methodology is a combination of traditional practices in archaeology and museology with long-term community involvement, and artistic and ethnographic methods. Archaeological Ethnography seeks not only to gather information about peoples’ connections with an archaeological past but also to discover which parts of the past are most relevant to contemporary communities. It provides a way of understanding non-official heritage discourses and how identity is based on and shaped through archaeological data. It is a cross-cultural "space" for practice, dialogue and critique, centred on the material remains of various periods and involving several researchers and participants, thus contributing to the decolonization of academic practice. Moreover, the community is not merely a passive agent of research, but is directly involved in the construction of knowledge and interpretation, critical reformulation and political negotiation. This methodology implies collaborating with, rather than studying, people (Meskell, 2010: 449).

Hopefully, it will also set the foundations for the transformation of the current government-managed Museum of Sibundoy, instead of the creation of an entirely new “Camëntsá museum”. From an intercultural perspective, instead of perpetuating existing divisions, the aim is to transform the present museum to include the Camëntsás, leading to dialogue, confrontation and collaboration among the various groups in the region. It is imperative that the museum recognizes that indigenous peoples have a different interpretation of heritage and how object protection and conservation should be done. These are far removed from Western concepts centred on materiality and object fetishism (Jansen, 2006: 242; Gnecco & Ayala Rocabado, 2010: 24).

Context

The Museum of Sibundoy reflects the idea that the Camëntsás are frozen in the past and focuses exclusively on its material aspects, together with fauna and flora of the region. Born from a private collection, it is a clear example of a “European transplant” (Harrison & Hughes, 2010: 245). The objects are displayed without their meanings and functions being mentioned, they are hung on the walls and inside window cases as untouchable memories of a distant past, whereas for the Camëntsás, objects must be touched and used, their function and meaning recovered and retold, and the memories associated with them, revived.

The perspective on local indigenous culture evidenced in the Museum of Sibundoy goes so far as to maintain a colonialist perception by labelling Camëntsá objects as ‘pre-Columbian’. Gnecco and Ayala Rocabado (2010: 30) point out that this rupture of historical continuity was one of the strategies
colonialism used to transform local histories and impose a new sense of time. This approach does not recognize the interests of the community and that this has the right to have particular relationships with its intellectual and material past, completely neglecting the existence of local and traditional practices for taking care of objects – which could lay the foundation for culturally appropriate forms of heritage management (Hollowell & Nicholas, 2009) and transforms communities into passive recipients of knowledge rather than practitioners, since only the specialists have the right and knowledge to use and care for heritage and the ability to properly educate the public (Smith, 2006: 29). This narrow approach omits a number of other social and cultural experiences. Consequently, it is natural that the elders and the Camëntsá authorities express the concern that nowadays, young people in particular, are becoming cultural heritage observers instead of actors and practitioners (Cabildo Camëntsá, 2012: 172). It is also evident, not surprisingly, that there was no involvement, consultation or consent of the Camëntsá people in creating a museum that exhibits its culture.

However, the Camëntsá community is extremely interested in having its own space where its objects can be exhibited, and its associated values and narratives transmitted according to its own perspective, as well as its knowledge about the territory and its conservation. There are several Camëntsá spaces for the transmission of knowledge that can be adapted and incorporated into the museological practice. These are spaces where the wisdom and spirituality of the elders and the knowledge about the world are transmitted, where values are identified and advice is given, where the younger generations learn how to behave and work in community. In addition, the community has its own notions of how objects should be displayed, and their stories told. Such work should not be led by an external expert, but in collaboration with the real experts on the Camëntsá culture: the elders and traditional indigenous authorities. We defend that consulting an indigenous community in the creation of a museum will only be respectful and effective when the community’s perspective is truly included, and it benefits from this.

Update on Research

Our first fieldwork season in 2017 was an opportunity to understand more about how the Camëntsás relate to their material culture, their sacred and archaeological sites, the territory, and the past. Conversations with elders, authorities, and young people as well, revealed several stories that provided us with elements to analyse and understand this relationship.

One of the first issues which came up was the disconnection between “scientific” and “traditional” knowledge. When talking about sites, objects, and human remains with members of the community, we often heard the expressions “what you define as archaeology” or “what you refer to as archaeological objects” as what we consider to be “archaeological”, is often considered sacred by the Camëntsás. Eventually, this also leads to a strong disparity on where and how objects should be kept and preserved and who is in charge of this process. Secondly, the Camëntsás value more the spiritual, sensitive and intangible qualities of these elements, rather than their physical, aesthetical and historical characteristics. Although what archaeology might tell them about their past is welcomed and important, it cannot be overlooked that maintaining these values is essential.

Finally, the Camëntsás contest the exhibition of human remains in the Museum of Sibundoy as this is regarded as an inappropriate way of dealing with the dead. We contend that the museum should be sensitive to this case and see such claim as legitimate. Consequently, other forms of exhibition or representation should be applied, and the human remains returned to the community to be given proper care or, at least, be kept out of sight.

Objects in the Museum of Sibundoy are regarded as “dead”. They have no function in the Camëntsá community as they are completely out of context and do not serve the communities needs such as passing on knowledge associated with these objects to young generations. Therefore, we must take into account the beliefs associated with the human remains, the spiritual character of objects, their connection with the ancestors, and the need to respect the Camëntsá worldview in order to appropriately take care of these objects.
Last year, we had the opportunity to connect some objects housed in the museum and photographs in the archive with the memories and knowledge of some Camëntsá individuals. These elements proved particularly useful in the process of reactivating memories and generating an intergenerational dialogue that confronted both the colonial past and present. Consequently, this led, along with research on oral history, to the first mapping and interpretation of archaeological and sacred sites in the ancestral territory. Also, connecting archaeological objects and archival data with the Camëntsá worldview, has allowed us to imagine the decolonization of the museum, freeing its reflective potentials and generating intercultural dialogue. For instance, what in the beginning we considered ‘archaeological’ is, from the point of view of the community, part of the present and thus cannot be approached from a linear perspective. This year, we will continue developing these ideas through workshops directed at questioning the importance of preserving material culture, and at connecting oral history with objects.

Contesting mainstream understandings of heritage, the Camëntsás affirm that all archeological objects in the ancestral territory belong to them, as they were made and used by their ancestors, and not strange, abstract people of the past. We feel that this understanding of archaeological remains should be considered when establishing mechanisms for their protection and conservation, as it would be more ethically appropriate to constitute the Camëntsás as the ideal custodian of their archaeological heritage because they have legitimate cultural and spiritual responsibility for the object in question. However, this is a completely different approach towards cultural heritage, that marks a sharp contrast with Western museology.

Therefore, we advocate for the total inclusion of indigenous communities in heritage management. This means that the community has the authority to make decisions, to control the research agenda, and is empowered through the results of our joint research, which are then applied to serve the community’s needs. If this collaboration is to have a real influence in an interdisciplinary area such as heritage management, it must reach not only all stakeholders but also a wider group of interested parties such as government agencies, policy makers, museums and archaeologists, heritage managers in general, and the public. It is necessary that all those involved in heritage management and indigenous peoples achieve a mutual understanding so that more inclusive and holistic approaches can be created (Allen & Phillips, 2011).

The 2018 Season
During our field work (September-November) we will collaborate with the community based on the concept of affordances (Basu & De Jong, 2016) to understand how the Camëntsá people relate to the
past and how this plays an essential role in the construction of the present communal identity and sense of belonging to the territory.

Our research also uses artistic and ethnographic practices, co-produced with the Camëntsá people, to reveal this contested and “unofficial” heritage. We will collaborate with the community to critically address the local government-managed museum, the interpretation of archaeological and sacred sites, and the concept of territory. The inclusion of the latter is essential in our research, as in the Camëntsá worldview this goes beyond geometrically and materially defined borders, which in turn is reflected in the way art is perceived. This process will represent the community in its contemporary context by mapping its connection with the territory, sites and objects. Thus, we challenge colonial precepts in art and mainstream archaeological and museum practices and sparkle a missing and much needed intercultural dialogue.

Another important step will be mapping, documenting and digitalizing Camëntsá objects scattered around the Valley of Sibundoy, mainly in private houses, as well as in the rest of the country and internationally, in museums and collections. This will be a first step for the community to start envisioning the new museum. It is important to centralize this information and provide the community with access to it.

We cordially invite everyone interested in our project to follow our work at: https://bengbebenacheng.blogspot.com

References

ARTICLE

Reshaping of semi-tanned leather shoes: Characterization of the state of degradation, temporary softening by local (SympaTex® membrane) or integral (humidity chamber) aqueous treatments, inflatable reshaping structures, and storage supports.

Lucile Ruynat, student, Master of Arts HES-SO in Conservation-Restoration, Neuchâtel, Switzerland
Introduction

The deformation and the stiffness of the leather can make objects, as trivial as shoes, difficult to understand, to study and to exhibit. As a result, these artifacts suffer from a poor state of conservation, which limits their potential educational role and manufacturing technology and aesthetic appreciations.

This article proposes ways to easier evaluate the stiffness of leather, the reshaping of leather shoes in 3D (complicated by limited access to the internal parts) and the manufacturing of internal storage supports. These results coming from a masters project work on a selection of eight pairs of shoes from Africa, Asia and America representative of the state of conservation of the shoe collections, carried out at the Musée du Quai Branly-Jacques Chirac in Paris (France). The objective is to propose logical interventions during similar treatments under usual conservation laboratory conditions (time, costs, accessibility of equipment and implementation).

Assessment of the leather stiffness by handling

Assessing the stiffness of a leather before reshaping is an essential step in determining the need and method of softening leather. In order to make a routine assessment easy to implement, we have characterized six degrees of stiffness established following the handling of leather objects. “Handling” means moderate forces applied with the hands.

- **Degree I:** The leather is uniformly very flexible, it deforms during handling, or even under its own mass.
- **Degree II:** Leather has a natural hold, although it is flexible enough to be deformed or reshaped by handling.
- **Degree III:** The leather can be deformed by handling, but it retakes its original shape if it is no longer maintained. Folds can be strong.
- **Degree IV:** The leather can be distorted by handling, but the reshaping will tend to crack or tear it.
- **Degree VI:** The leather is stiff and keeps its original shape during handling. No deformation is possible by handling.

The flexibility of the leather depends mainly on the species of animal used, the type of tanning, the loss of water inside the leather in particular because of the phenomenon of hysteresis during fluctuations of moisture and the state of degradation (1). Table 1 shows that the highest degrees of stiffness correlate most of the time with the lowest shrinkage temperature and pH (Table 1). The degree of stiffness of Benin shoes and Inuit children’s boots is high because the shoes have an inner lining made of leather or fur: the assessment of the degree of stiffness is therefore not alone representative of the state of deterioration of the leather.

Reshaping by aqueous treatment

Various methods have been used to restore or maintain the flexibility of leathers such as fats, oils or humectants (polyethylene glycol, glycerol). In the museum context, objects are no longer used according to their original function: it is therefore not necessary to induce long-term flexibility. Aqueous treatments allow a temporary softening of the leather without the definitive addition of an exogenous material which complicates the composition and whose consequences (in the medium or long term) can be harmful. Added water molecules create hydrogen bonds with the free water present in the leather and the polar collagen group forming a sheath around the fibers and improving plastic properties. However, water may lead to irreversible processes of alteration and collagen denaturation and thus alteration of the leather.

To limit the water intake, we have selected two methods already implemented in the conservation field: the use of SympaTex® membrane for local reshaping and humidity chamber for the treatment of the entire object. For humidity chamber treatments, the relative humidity (RH) should gradually increase and stabilize before condensation on the leather surface and the migration of liquid water. Based on the conclusive preliminary study of Quincot and al. (2), the relative humidity of the humidity chamber was buffered at 75% with osmosis water solution saturated with refined food salt (99% NaCl). Each salt has its own Equilibrium Relative Humidity (ERH) value at a given temperature. This implies that a saline solution placed in hermetic chamber buffers the relative humidity to its ERH by rapid
adsorption and desorption of water vapor. Sodium chloride (NaCl) has an ERH 75% (± 1%) from 5 to 60°C and it is not volatile (3); it is therefore commonly used for conservation-restoration treatments (4). The tests that we carried out showed that salt in the proportion indicated in the article (30g of food salt for a chamber of 3.22 dm³), made it possible to buffer a chamber of 162 dm³ with 75% with daily variations of ± 7 % RH (considered acceptable because of the greater variations of the conservation lab during this period). Further tests have shown that the amount of food salt can be halved for equivalent efficiency.

<table>
<thead>
<tr>
<th>Pair of shoes</th>
<th>Degrees of stiffness</th>
<th>Mean values of the Ts (type of tanning)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin shoes</td>
<td>Pair: IV</td>
<td>Shoe 1 74,6°C (Vegetable: Hydrolysable)</td>
<td>5,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shoe 2 74,12 °C (Alum)</td>
<td></td>
</tr>
<tr>
<td>Hunza boots</td>
<td>Pair: III</td>
<td>74,12°C (Alum)</td>
<td>5,43</td>
</tr>
<tr>
<td>Chukchi boots</td>
<td>Legs: IV, Soles: VI, Vamps: V</td>
<td>54,41°C (Drying)</td>
<td>5,66</td>
</tr>
<tr>
<td>Tlingit boots</td>
<td>Legs: IV, Soles: VI, Vamps: V</td>
<td>48,81°C (Drying)</td>
<td>4,99</td>
</tr>
<tr>
<td>Argentina boots</td>
<td>Legs: IV, Soles and vamps: VI</td>
<td>40,86°C (Drying)</td>
<td>4,76</td>
</tr>
<tr>
<td>Huron-Wendat moccasins</td>
<td>Moccasin 1: V, Moccasin 2: III</td>
<td>Moccasin 1: 35,88°C (Smoke and fats)</td>
<td>4,96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moccasin 2: 40,04°C</td>
<td>4,73</td>
</tr>
<tr>
<td>Inuit children’s boots</td>
<td>Legs: IV, Soles and vamps: VI</td>
<td>60,85°C (Drying)</td>
<td>5,99</td>
</tr>
<tr>
<td>Inuit red boots</td>
<td>Vamps and legs: III, Soles: IV</td>
<td>61,08°C (Drying)</td>
<td>5,94</td>
</tr>
</tbody>
</table>

Table 1-Degree of stiffness and results of instrumental analyzes for every pair of shoes

Before using aqueous reshaping treatments, the water sensitivity of the different constituent materials should be tested. Whenever possible, the objects dusted and cleaned beforehand in order to avoid the formation of microclimates that can promote the development of mould.

Inflatable structures
To gradually modify the morphology of the leathers during the humidification, we tested the use of inflatable structures in heat-sealed PVC film. The PVC film has been selected for its characteristic flexibility which gives a homogeneous inflation of structures without the formation of folds. As a thermoplastic polymer, it can easily be heat-sealed and, as it is not elastic, the structure is stabilized to the shape determined during the drawing of a pattern.

The initial intention was to slide the deflated structure into the internal part of the shoes and then, by gradually inflating it, to be able to uniformly push the walls of the object without excessive pressure. The tests for making PVC structures have highlighted the difficulty of creating complex shapes perfectly hermetic and adapted to the internal shape of the shoe. In addition, the multiplication of the layers and...
the heat-seals generate extra thicknesses and problematic angles when it is inserted in very tight spaces. Because of this, different sizes of inflatable structures of simple shape (Figure 1) were made for a local and progressive reshaping of weakened or extremely folded areas (Figure 2). The system is operated by a hand pump (Figure 3). The air is blocked in the system by a non-return valve and the pressure is measured with a manometer. This allows control and prevents over-inflation which would cause the explosion of the structure. The end of the hose is bound with tape. The opening/closing valve opens the system and deflates the structure when removed from the object. To maintain morphology during drying, plastazote® polyethylene foam bands were temporarily placed inside the shoes. The size and thickness were adjusted according to the need for support (Figure 4).

Figure 1- Examples of different sizes of inflatable structures of simple shape

Figure 2- Opening of a fold with an inflatable structure
Internal supports
The purpose of making internal supports is to preserve the new morphology of the objects after they have been reshaped. The mechanical assemblies of the different parts avoid the detachment of elements during the aging of the adhesives. Depending on the need for support, solid supports perfectly adjusted to the shoe’s morphology, or more standardized hollow supports can be made of heat-sealed Plastazote® polyethylene foam (Schema 1). For ease of handling, the storage supports have been designed in two distinct parts; the foot part and the leg part. The solid foam supports can be composed of three parts to ensure easy removal: a central part and two laterals. The central part can be slightly higher to facilitate its grip. Space left free makes it easier to remove the lateral parts (Figure 5). The installation or removal of this system does not involve friction forces on the leather, so it can be used for fragile surfaces such as furs. The hollow supports may be flattened or folded back on themselves for ease of insertion or removal (Figure 6).

Conclusion
Protocols for the assessment of the degree of leather stiffness and for the reshaping on humidity chamber buffered with a food salt solution, as well as the decision schema to produce internal supports, facilitate a similar treatment approach under usual conservation laboratory conditions.
The use of inflatable structures is effective for the gradual reshaping of particularly weakened or folded zones. The system and inflatable structures are reusable, so it is possible to create a repertoire of structures within conservation laboratory.

Schema 1- Decision schema to help in the manufacture of internal storage supports

Figure 5- Example of solid foam support composed of three parts to ensure easy removal
This work could be deepened by additional tests of the manufacture and use of inflatable structures for reshaping leather objects. It would be interesting to be able to easily heat-seal curves, test the effectiveness of other polymers aside from PVC and improve the ergonomics of the system. In addition, it would be interesting to quantify the minimum volume of water solution saturated with salt necessary to increase and buffer the relative humidity to 75% depending on the volume of the chamber. This would optimize the space inside the humidity chamber and minimize the risk of accidental contact between the solution and the object. Accessibility, low cost and a priori lack of maintenance make it a very promising material. It would also be interesting to extend this protocol to other types of leather objects and to characterize how to adapt the treatments to other conditions (Figure 7).
References

(3) ISO 483, Plastics - Small enclosures for conditioning and testing using aqueous solutions to maintain the humidity at a constant value, International Organization for Standardization, 2005.

(5) Falcaão, L., and Araujo, M.E., ‘Tannins characterisation in new and historic vegetable tanned leather fibers by spot tests ». In Journal of Cultural Heritage, n°12, Conservation Institute, Smithsonian Institution, Suitland, USA, 2011, pp. 149-156.

Method of analyses

The analyzes were carried out at the Research Center for the Conservation of Paris, under the supervision of Laurianne Robinet (research engineer) and Sylvie Heu-Thao (research technician) and the leather and parchment pole.

- Shrinkage temperature measurements by Differential Scanning Calorimetry (DSC).
 Sample ~ 1 mg in distilled water excess disposed in 30 μl aluminum DSC capsules.
 Differential scanning calorimeter, Perkin-Elmer DSC 8000®, Pyris Series DSC 8000® software
 The measurements were made from 5°C to 120°C with a heating rate of 10°C/min, in an inert medium nitrogen flow.
 The reference capsule is an empty capsule
 Average of 3 measurements per sample. The shrinkage temperature should be considered according to the tanning type.

- pH
 pH-meter Mettler Toledo Five easy F20®
 Aqueous extract measurements of 60 μL.

- Identification of tanning agent by FTIR-ATR (fat, alum, vegetable tanning)
 Infrared Spectrometer Thermo Nicolet®, diamond ATR mode, acquisition conditions: 4 cm-1 resolution and 64 scans. Spectrum Review with Omnic® Software.
 At least two measurements per sample were performed.

- Identification of the type of vegetable tanning by spot tests:
 The spot tests are based on the article by Falcão and Araujo (5). The vanillin test reacts with condensed tannins and is characterized by a red color. In contact with hydrolysable tannins, a slight yellow coloration can be observed.
 4% vanillin solution (m/V) in ethanol (99%), hydrochloric acid (6%).
Andrew W. Mellon Foundation Opportunity for Diversity in Conservation

Ellen Pearlstein and Laleña Arenas Vellanoweth

UCLA has received a grant from the Andrew W. Mellon Foundation intended to help increase diversity in the study and practice of art conservation, a field dominated by professionals who identify as non-Hispanic white.

The grant has begun supporting a four-year pilot program designed to provide greater access to and information about the field of conservation by creating outreach materials about art conservation, establishing outreach programs in schools and organizations in underrepresented communities, developing workshops for interested students and funding undergraduate internships.

“There is a distinct lack of diversity in the professional field of art conservation,” said principal investigator Ellen Pearlstein, professor of information studies and conservation at UCLA. “Non-Hispanic whites dominate leadership positions in museums, in private practice, and in education. There is also an increasing interest in libraries, archives and museums themselves that celebrate diverse cultures, languages and races, including a growing number of museum collections with a Latin American focus,” said Pearlstein, founding faculty member in the UCLA/Getty Program in the Conservation of Archaeological and Ethnic Material. “We’ve designed this program to initiate an educational pipeline into the field of conservation, and one that is more pressing than ever, considering how cultural diversity might benefit the research and interpretation of such collections and institutions.”

Beginning in the fall of 2017, outreach sessions were held by Program Manager Laleña Arenas Vellanoweth and PI Pearlstein at area colleges, promoting opportunities to apply for a six-day workshop for 15 students to be offered this summer at the UCLA/Getty Program laboratories at the Getty Villa. The workshop includes a combination of theoretical discussions, practical exercises, and visits to museums and conservation labs in the greater Los Angeles area. The update is that we had 109 applications for the 15 spots in the workshop held at the Getty Villa between July 9-14, and our Advisory Committee met to assist in the selection of the final cohort—one with exceptional representatives from African American, Native American, Latinx, and Asian backgrounds!
Out of these 15 students, we are able to award six fully funded pre-program internships to students who demonstrate a commitment to graduate conservation education. All 15 workshop participants along with other applicants who have reached out are being mentored to assist them in finding their way among collections based work.

The entire program including the workshop and six supported internships will repeat in 2019 and 2020.

Workshop participant Brandon Castle, Tsimshian, presents his first Raven Clan blanket brought to the Andrew W. Mellon funded Opportunity for Diversity in Conservation 2018 workshop at UCLA/Getty Conservation Labs at the Getty

Announcements

Chilkat Dye Working Group Announcement

Ellen Carrlee, Conservator, Alaska State Museum

Have you done dye analysis on Chilkat weaving? The Chilkat Dye Working Group has begun monthly meetings at the Alaska State Museum in Juneau to provide guidance on a research project as well as a forum for weavers and museum staff to collaborate. Chilkat weaving is a traditional indigenous Northwest Coast textile technology and spiritual practice used to make robes, tunics, and other ceremonial garments. The Tlingit, Haida, and Tsimshian cultures of Alaska and Canada are the primary cultures weaving in this technique. Chilkat weaving typically includes warps of undyed mountain goat wool twined with cedar bark, and dyed wefts of either mountain goat wool or commercial wool yarns. The most common color palette is white, black, yellow, and blue/green. The Chilkat Dye Working Group was recently established to guide a project within a new Mellon Foundation grant initiative through Portland State University. Chemistry professor Tami Lasseter Clare has established a Pacific Northwest
Consortium for the Science of Cultural Heritage Conservation. This consortium has members at the Alaska State Museum, Seattle Art Museum, Portland Art Museum, the University of Washington Libraries, and the Jordan Schnitzer Museum of Art at the University of Oregon. The five-year grant will fund analysis of Northwest Coast and Asian collections at participating institutions for professional scholarship and educational outreach activities.

Ethnographic sources and contemporary weavers describe some of the natural dyes used in the past, but there are few studies linking known historic robes to specific dyes. Many weavers today desire to use natural dyes, not just for their beauty but also for connection to ancestors and connection to the land. A better understanding of dye technology and performance will assist living weavers in their study and inspiration from old robes as well as new innovation and dye choices. Analysis of dyes used on old robes may reveal clues to dating, identification, and locality. Condition issues sometimes associated with Chilkat dyes include embrittlement of fibers (especially browns and blacks), light fading, color shifts over time, and dye bleeding.

Phase one of the project includes inventory of the known historic and contemporary dyes typically used (such as hemlock bark, copper, and wolf moss) through oral history and literature review, procuring samples for baseline analysis, and the development of a reference database for Chilkat dyes. When successful analytical techniques have been identified and minimum sample size has been determined, phase two will include sampling from old robes in museum collections. Phase three will connect the research to the Alaska State Museum’s regalia exhibit scheduled for summer 2020 as well as local indigenous events such as the Sealaska Heritage Institute’s biennial cultural festival “Celebration” in June 2020 and Wooshteen Kanaxtulaneeegí Haa At Wuskóowu, (Sharing Our Knowledge: Conference of Tlingit Tribes & Clans) in September of 2019. Collaborative publications on the progress and results of the research will be forthcoming. The project would greatly appreciate any information regarding previous analysis of Chilkat robes. Please contact conservator Ellen Carrlee at the Alaska State Museum. Ellen.Carrlee@alaska.gov.
The curators of African Art and sculpture and decorative arts conservators at the Virginia Museum of Fine Art are in year two of the three year Conservation Initiative in African Art funded by a grant from The Andrew W. Mellon Foundation.

The project goals are to generate more accurate and comprehensive material, cultural, and scholarly knowledge of the objects in the VMFA collection through close collaboration between conservators and curators as well as specialist consultants and source community members.

Over fifty objects from multiple source communities are the subject of scholarly research and scientific analysis. The objects include, for example, Minkisi, Vodun Bocio, Ethiopian metal crosses, Zulu beaded garments, and ceremonial regalia and are undergoing analyses using x-radiography, x-ray fluorescence spectroscopy, infrared spectroscopy, microscopy, ultra-violet light imaging, CT scanning, and peptide analysis.

The project will host a symposium in April 2019 titled Bridging Disciplines in the Study of African Art: The Curator:Conservator Connexion that will provide a forum for interdisciplinary exchange. For information about the symposium please contact Ashley.duhrkoop@vmfa.museum

The new MEG in Geneva

Lucie Monot, Conservator, Musée d’Ethnographie de Genève

On 31st October 2014, the Museum of Ethnography of Geneva, the MEG, opened the doors of a whole new building. Its emblematical architecture houses two large underground exhibitions rooms, a permanent one showing more than a thousand objects, gems of the collection from all five continents, and a temporary one with changing creative displays offering windows on world cultures.

Working on the reopening of the museum meant to care for those just-over-a-thousand objects, moving them from their storage space to the conservation studio, choosing on the best treatments for each individual one and performing conservation, from removal of museum dust to remedial interventions. It also meant working hand-in-hand with designers on the showcases plans for the best presentation that accommodates each object’s fragilities while allowing a good visitor experience. Since the museum reopened, it means monitoring the environment of this new space and, in parallel, preparing each new temporary exhibition. They have been opportunities to dive into Amazonian feather works, indigenous Arts from Australia and the Torres Islands, and into African religions through magical and devotional artefacts and works of art. In the near future, the world of European fairytales will allow us to rediscover objects from the European collection.

Working on exhibitions is always a chance to investigate each object’s history, from its context of use to how it was collected. Some projects have also been chances to welcome overseas guests from indigenous background who collaborated with the museum. However, each exhibition presents only a small portion of the collection that numbers more than 74’000 artefacts in total, plus graphic arts and photographic materials. At the moment, they are all being packed to be moved to a new storage facility in 2019. Taken together, they offer an incredible potential for future projects in which research and conservation shape new opportunities for creation and collaboration with artists and/or source communities. Among others, a project of conserving two large totem poles from Alaska is being shaped with an aim to restore a connexion with descendants of the artist and contemporary carvers.

Geneva itself, proud of its multiculturalism and international position, offers further potential. Part of the United Nations that has its headquarters in Geneva since 1946, the Office of the High Commissioner for Human Rights (OHCHR) hosts every year since 2007 the Expert Mechanism on the Rights of Indigenous Peoples (EMRIP). Before that, in 1997, OHCHR established the Indigenous Fellowship Programme, which is still running. And since 1978, the Indigenous peoples’ centre for documentation, research and information (Docip) promotes and compiles records on the rights of indigenous peoples at an international level.

A new space offers the opportunity to rethink and renew the identity of a century-old museum. Situated in Geneva and holding collections from indigenous and world cultures, the MEG could become a hub for the exchange of knowledge and ideas, where further collaborative partnerships can emerge with communities whose culture and objects are represented.
CONFERENCES AND WORKSHOPS

Lessons Learned: Textile Conservation - Then and Now (français à suivre)
12th North American Textile Conservation Conference
Ottawa-Gatineau, Canada, September 23 - 27, 2019
The twelfth biennial North American Textile Conservation Conference (NATCC) will be held in Ottawa-Gatineau, and will focus on the theme of “Lessons Learned – Textile Conservation – Then and Now.” The choice of the topic was inspired by NATCC’s return to the City of Ottawa, venue of our first conference in 1997. Analytical studies, conservation protocols, treatments, exhibition displays, and materials and techniques have evolved during the past 20+ years, often dramatically. We propose to revisit conservation procedures, best practices, collaborations, and other preservation guidelines carried out during the 1980s through the present.
More information on the upcoming conference soon!
Please email any questions to contactNATCC@natcconference.com
http://natcconference.com/

Call for Papers Invitation
The Glasgow Barkcloth project and the ICON Ethnography Group invite submissions for a one-day symposium on the conservation of barkcloth material from any part of the world.
We welcome papers on all aspects, including:
Case studies of interventive conservation, preventive care, storage, transport and display of barkcloth, or of objects made of beaten inner-bark/bast-fibre materials. The material science of dyes, pigments, various bast-fibres and other materials used for barkcloth production.
Collaborative working among museums, conservators, artists and community.
Presenters are invited to give either a presentation (10 or 20 mins) or a poster and will contribute to the symposium’s PDF post-print.
Please submit your abstract (max. 250 words), together with your contact details, professional/academic affiliation and whether you are offering a presentation or a poster, to arts-admin-barkcloth@glasgow.ac.uk by Friday 14 September. Contributions by students and emerging professionals are warmly welcomed.

https://icon.org.uk/events/call-for-papers-conservation-of-barkcloth-material

Call for papers: We are particularly interested to hear from contributors whose research and/or practice engage with the following questions:

How can ethnographic collections be used to examine or contest established notions of ‘Self’ and ‘Other’?

How can dialogical and/or affective engagement with ethnographic objects promote critical reflections on controversial issues (e.g. colonial legacies such as racism, ethnocentrism and primitivism, memory making, gender stereotypes)?

To what extent can imaginative engagement with objects (through poetry, drawing, drama, dance, storytelling, music, etc) help challenge a fixed understanding of cultural identity and promote inter and transcultural dialogue?

How can ethnographic museums use object-led practice to strengthen community collaboration and sense of ownership of collections?

Deadline for submission: 1 October 2018. Find out more information on abstract submission.

ICME (International Committee for Museums and Collections of Ethnography) and the Horniman Museum and Gardens invite scholars and practitioners to explore innovative practices and theories in object-led work with ethnographic collections. Object-led practice can draw strongly on our ability to employ the senses to reimagine our place in the world. In-depth engagement with ethnographic objects in particular can promote social interactions and critical reflections on the logics of power and prejudice upon which collections are constituted.

This two-day conference, organised in collaboration with ICOM national committees of Pakistan, Germany, Croatia and Norway, is informed by humanist anthropology, which starts from the experience of human actors, addressing what it means to be human and to live a human life. In ethnographic museums, it supports and imagines diverse forms of public engagement and education and promotes activism.

Oceania Symposium
Royal Academy, London
Thursday 27 September 2018
11am — 6pm

This symposium explores the power and diversity of Oceanic art, and the politics of its circulation, interpretation and curation today.

Drawing on the experience of leading scholars, experts and art-world professionals, this one-day symposium aims to offer a unique perspective on the art of the region of Oceania.

Responding to the magnificence, range and dynamism of works in the Oceania exhibition, this international symposium explores spiritual power, social value, style and history through the art of the region, from the earliest times to the present.

Subjects covered will include:
• Voyaging, place-making and encounter through Oceanic genres
• Oceanic aesthetics, performance and exchange
• The violence and cross-cultural fertility of the colonial encounter
• The making of collections from Oceania in Europe
• The revaluation and negotiation of those collections today
• Contemporary engagements with heritage in the Pacific
• Contemporary art from the Pacific on a global stage

Includes exclusive access to the Oceania exhibition throughout the day of the conference
In our third newsletter, we introduce you to Sabine Cotte, Assistant Coordinator of the Working Group and one of the editors of the newsletter. Sabine is a French-Australian private conservator, based in Melbourne (Australia) since 2001. She holds conservation degrees from Institut National du Patrimoine (Paris), ICCROM (Rome) and a PhD from University of Melbourne, Australia. She has participated in several workshops in the Himalayan region for UNESCO, ICCROM and private NGOs, focusing on training local people in conservation, with a focus on thangka paintings, and in disaster recovery. She is also a casual teacher at the Grimwade Centre for Cultural Materials Conservation, University of Melbourne. Website www.sabinecotte.com

FROM THE EDITORS

We’d like to thank all of those who contributed to the Newsletter, and to invite all members to contribute to future newsletters. Please ensure that any submissions are made in Word document format without any embedded footnotes or images – please provide figures and tables as referred to in text, listed and numbered in a separate document. We’ve introduced a new section to introduce members of your working group – we hope you all enjoy seeing a picture and some information about Sabine’s work, and over the next few issues you’ll get to know other members. Also, please send us any information you might have about workshops and upcoming events – we are all very interested to hear about what is going on.

All the best,
Sabine Cotte and Catherine Smith
(sabinec@ozemail.com.au, catherine.smith@otago.ac.nz)